Some global bifurcations related to the appearance of closed invariant curves

نویسندگان

  • Anna Agliari
  • Laura Gardini
  • Tönu Puu
چکیده

In this paper, we consider a two-dimensional map (a duopoly game) in which the fixed point is destabilized via a subcritical Neimark–Hopf (N–H) bifurcation. Our aim is to investigate, via numerical examples, some global bifurcations associated with the appearance of repelling closed invariant curves involved in the Neimark–Hopf bifurcations. We shall see that the mechanism is not unique, and that it may be related to homoclinic connections of a saddle cycle, that is to a closed invariant curve formed by the merging of a branch of the stable set of the saddle with a branch of the unstable set of the same saddle. This will be shown by analyzing the bifurcations arising inside a periodicity tongue, i.e., a region of the parameter space in which an attracting cycle exists. © 2004 IMACS. Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global bifurcations of Closed Invariant Curves in Two-Dimensional Maps: a Computer Assisted Study

In this paper we describe some sequences of global bifurcations involving attracting and repelling closed invariant curves of two-dimensional maps that have a fixed point which may lose stability both via a supercritical Neimark bifurcation and a supercritical pitchfork or flip bifurcation. These bifurcations, characterized by the creation of heteroclinic and homoclinic connections or homoclini...

متن کامل

Contact bifurcations related to critical sets and focal points in iterated maps of the plane

In this survey article we briefly describe some properties of difference equations obtained by the iterated applications of two-dimensional maps of the plane and we try to characterize the qualitative changes (or bifurcations) of the asymptotic behavior of the solutions, as some parameters are varied, in terms of contacts between particular curves and invariant sets which characterize the globa...

متن کامل

Center bifurcation for Two-Dimensional Border-Collision Normal Form

In this work we study some properties associated with the bordercollision bifurcations in a two-dimensional piecewise linear map in canonical form, related to the case in which a …xed point of one of the linear maps has complex eigenvalues and undergoes a center bifurcation when its eigenvalues pass through the unit circle. This problem is faced in several applied piecewise smooth models, such ...

متن کامل

Closed Curves of Global bifurcations in Chua's equation: a Mechanism for their Formation

An important task for the understanding of the dynamics of parameterized systems of autonomous ordinary differential equations is the determination of the organizing centres as well as the bifurcations they exhibit (see, e.g. [Guckenheimer & Holmes, 1983; Kuznetsov, 1995; Nayfeh & Balachandran, 1995; Wiggins, 1996] as general references). The combination of analytical and numerical tools is usu...

متن کامل

Adaptive fuzzy pole placement for stabilization of non-linear systems

A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2005